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ON THE TIME REQUIRED FOR GROUP MULTIPLICATION

by P. M. Spira
1. Introduction

This paper is concerned with the time required to perform group
multiplication by means of networks of logical elements--each having a
limited number of inputs and unit delay in computing their output function,
Previously, Winograd [1] has considered the problem and has given a lower
bound on the time required to multiply in a finite group as well as a meth-
od valid for abelian groups. Here we give a new lower bound which is, in
general, higher than Winograd's but which reduces to his bound if the group
of interest is abelian. In addition, a scheme to realize multiplication in
any group, abelian or not, is given. This new circuit has computation time
either equal to or one time unit greater than our lower bound. Also, if
the group of interest is abelian, it computes at least as rapidly as

Winograd's network to do the same multiplication,

2. Basic Concepts

Let C be a logical circuit composed of eléments having at most r
input lines, one splittable output line, and with unit delay in computing
their outputs. Each line carries values from the set Jd = {0, 1, ...,
d-1}. Let the input lines of C be partitioned into two sets with I
the set of possible configurations on the jth (j = 1,2). Oc is the,set
of output configurations. Following Winograd, such a circuit is called a
(d,r) circuit.

Due to the unit delay in the elements comprising the circuit, there
will be a certain delay between the time the inputs are presented and the

time the output is available.

Let G be a finite group.

Definition. A circuit C is said to compute multiplication in G in time

T if there are maps zj: G - Ic j (j = 1,2) and a 1-1 function h:

?

G > 0c such that if C receives constant input [zl(a), zz(b)] from

time O through time T-1 the output at time 7T will be h(ab).

th .
Definition. Let hj(x) be the value on the j output line of C when

the overall output configuration is h(x).
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Definition. Let A C G, Then A is said to be right j-separable by C

if, given a;, a,c A with a, 1 a, then dbeG for which

hj(alb) 2 hj(azb)
Left separability is defined dually.

Definition. For any set S let |S| be its cardinality. Let X1 be the

least integer 2 x, and let [xJ be the greatest integer = x.

Now let G be a finite group. Later on we will utilize the following

definitions and lemma.

Definition. Let H be a subgroup of G. Say P(a,H) holds if o aeH\{e)
contained in any non-~trivial subgroup of H and say P(H) holds if

P(a,H) holds for any acH\{e}. Let O(G) be the order of the largest
H =G such that P(H) holds.

Definition. If P(G) holds or G = {e} let B(G) = 1. If not for any

ceGl{e] let B(c) be the maximum order of any subgroup of G not
containing ¢ and let PB(G) = min (8(c)y.

ceG\(e}

Lemma 2.1. For any finite group G, |G| 2 a(c) B(@).

Proof.

True trivially if P(G) holds or if G = {e}. So assume not. Let
H< G and acH with P(a,H) holding and |H| = ®(G). Let K = G with

IKI = B(G) and a¢K. Then, since HN K is a subgroup of H, HN K = {e}.
Say 4 g€G such that

(k) k,) C Hg N K
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Then A hl’ 9 1; 5 9

Hence kl = kz and there can be at most one element of K in any right

hyeH for which h,g = k;; h,g = k,. Thus klkglen N K.

coset of H, So
|H| |k| =6

3. The Lower Bound

We now give our lower bound after some preliminary lemmas.,

Lemma 3.1, 1In a (d,r) circuit the output of an element at time T

can depend upon at most rt input lines,

Proof.

Just consider the fan-in with modules having r input lines each to
the height of T. |

Definition. For a (d,r) circuit C which multiplies in a finite group

G let

o
]

[xeG:hj(xa) hJ(a) VacG)

=
1

{yeG:hj(by) hj(y) VbeG)

From this we obtain

Lemma 3.2, R, and Lj are subgroups of G. A maximal size right j-
- J
separable subset of G contains exactly one element from each left
coset of R, in G; a maximal size left j-separable subset of
J

G contains exactly‘one element from each right coset of Lj in G.
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Proof.

If x,yeRj then, given any a€eG
-1 -1
h_ =h, = h_
{7'ya) = b (xx'ya) = n(a)

-1
Thus x "yeR, , so it is a subgroup. If hj(xa) = hj(ya) VaeG
then hj(y-lxa) = hj(a) VacegG.
Thus y~lxcRj so that xR = yR;. The rest follows by duality. 1

The underlying lemma used in deriving the lower bound is

Lemma 3.3. Let C be a (d,r) circuit to multiply for a group G in
time T, Then

o (o B Tk )

Proof.

IR,

G
input lines of I 1 and upon at least [logd{L {1 input lines of

c, .

J

ge 16| ”
since there are right and left j-separable sets of size and
e | R, |

J
TE——T respectively. Thus, from lemma 3.1

r oz mﬁx{[logd—:—{——i-l + [1ogd%1} i

We have enough to prove

G
The jth output at time T must depend upon at least [logd | :]
I

Theorem 3.4. Let G be a finite group. Then if C 1is a (d,r) circuit

to multiply in G in time 7T

T 2 {logrz [logd é(gyl]]
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Proof.

Let acG be such that B£(a) = B(G). Now 3 j for which hj(a) 3
hj(e). Thus a¢Rj(e) and a{LJ(e). Hence

lel = g(6) , |Lj| = 8(G)
and the result follows from lemma 3.3. |

Corollary 3.5. Also

T2 Ilogr 2 flogda(c)]l

Thus Winograd's result is a corollary of our lower bound.
In his paper [1] Winograd indicates that, if G 1is abelian, then
a(G) is the order of the largest cyclic p-subgroup of G. A complete

characterization of a(G) is provided below. First

Definition. Qn’ the generalized quaternion group, is the group of order

2n with two generators a and b satisfying

Theorem 3.6. A p-group contains a unique subgroup of order p iff it is
cyclic or a generalized quaternion group. (It must be cyclic if

p is odd).

Proof.

See Hall [2] p 189. 10

Corollary 3.7. Let G be any finite group. Then a(G) is either the

order of the largest cyclic p-subgroup of G or the order of the
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largest generalized quaternion group contained in G, whichever

is larger.

Proof.

Let H be any subgroup of G. As noted above, if P(H) holds, then
H 1is a p-group with lHl = pn for some prime p and integer n, But
every subgroup of H contains a subgroup of order p. Hence P(H) will
hold iff H contains a unique subgroup of order p. But then H is

n
either cyclic of order p or a generalized quaternion.l

We close this section with an example of a group G with

a(e) B(c) < |a].

Example.

Let p be a prime > 2, Then there is a group generated by three

generators a, b, and c¢ with defining relations (2] (page 52)
a =b =c¢ =e ab = bpac ca = ac cb = bc

2
which has no element of order p . Let H be a subgroup of order p

Then it is easy to show that ceH. Hence

B(G) = p

But a(G) will also be p since, if 2 does not divide the order of a
group G, then a(G) is the size of the largest cyclic p-subgroup of

G. Hence
2
a(c) B(e) = p~ < |G|

This shows that our lower bound is, in general, higher than Winograd's.

The following lemma shows that the two bounds are equal if G 1is abelian.
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Lemma 3.6. Let G be abelian. Then |G| = a(G) B(G).

Proof,

G 1is abelian so G = J = J1 X vee X Js’ where each Ji is a cyclic

r, r, r
p-group with lJiI = pi 1 and, with no loss of generality b, 1 2 pj J
if i< j. Assume s > 1 or else the theorem is trivial. Let bi gen-

erate Ji;l =1 = s, and write a generic element of J as (bltl,

t
b s). Then P(bl, Jl) holds and Q(J)

*

r s
Py 1. Similarly bl¢ J2 X
. X Js but is in any subgroup which intersects J1 non-trivially.
Thus

r,
B(3) <pp) =[] », 7
1=2
tl t
Let b = (b1 LN 5) be any element of J\{e}. Then T j with
tj # 0 (mod pjrj) and
s
b ¢lI 3
i=1
itj
Hence B(b) 2 B(by) . Thus
s r.
B(»,) = B(3) =1H2 Py

and the theorem is true by isomorphism. |

4, The Multiplication Scheme for Finite Groups

In this section we describe a scheme to multiply with a (d,r)
circuit valid in any finite group G--abelian or not--and show that our
computation time is never more--and often less--than that of Winograd's
circuit in the case that G 1is abelian. In addition, our scheme will be

valid for r 2 2, d 2 2 whereas his is not valid unless r = 3,
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Lemma 4,1. Let K be any subgroup of G, Then 3 a (d,r) circuit to
compute ¢ : GX G- {0,1} 1in time

K&l

T=1 +[-logr [logd TET-‘]

where
¢(a,b) = 0 if abekK
#(a,b) =1 if ab¢K
Proof.
. |g|
Let M = &l - Pick a coset representative vy €Kvy for each right
. -1
coset of K in G. Then {vi } will be a set of left coset represen-
. -1 ~1 -1 - -
tatives, for vi K=v, K iff viv, €K iff v_1 = vil. Define maps

z, and z, from G to the space of fiogd M] -ary vectors over Jd such
that

z,(g)) = z,(g,) iff Kg = Kg,

z,(g) ® z,(e7) =0

where O is the all zero vector and @ 1is componentwise addition modulo
d. Note that z2 maps any two elements in the same left coset to the
same vector. The first level of the circuit consists of flong1 modulo
d adders. If ab is being computed these adders sum zl(a) and zz(b)
componentwise mod d. Thus all outputs are O iff dj such that aeva
and bevglK, i,e., 1iff abeK, The rest of the circuit is a fan-in of r
input elements having output 0 iff all inputs are O and output 1 if
at least one input is nonzero. This fan-in has depth flogrflong]].

Thus the circuit computes ¢ in time

T = flogrflongT] +1 10
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Corollary 4.2. There is a (d,r) circuit to tell if abeKu for any

U€EG in the same time.

n
Lemma 4.3. Say G has subgroups Kl’ ... , K such that N K, = {e}.
—_— n 1 g
Then knowing the right cosets containing any acG =1
suffices to determine a,
Proof.
N n n
= j N = N
Say Hal,azeG such that Kja1 KjaZVJ' Then j=1Kjal j=1Kja2-
Thus a; = a2.|
Corollary 4.4, 1If K1, ... , K is such a set of subgroups then I a(d,r)
n

circuit to compute multiplication in G in time

T=14+ max |1log, |log G I
1S jsn al"r |k |

J

We now immediately obtain

Theorem 4,5. For any d 2 2 and any r 2 2 there is a (d,r) circuit

to multiply in a finite group G in time

T=1 4 {1ogd[logr l;(Gg -|-|

Furthermore this circuit is within one time unit of the fastest

obtainable.

Proof.
The first part follows from lemma 4.3 and the definition of B(G);
the rest follows from the fact that

[logdflogr x 11 +1z2 flogd 2 [logr x 11 8
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From lemma 3.5 it follows that if G 1is abelian there is a (d,r)

circuit to multiply in G in time

T =1+ flogdflogr a{G) 11

In his paper ﬁJ Winograd derives a (d,r) circuit which performs

multiplication in such an abelian group in time

T=24 [1oglfr+1{J ( ZJ) ltog, a(G)11 for r z 3

From the fact that this number is always at least as great as

1+ hoglf””J [1og, (6) 1]
2

and in addition

t?%lj <r for r =3

it follows that his computation time is never less than ours and often

greater,

Example.

Say r =4 and flogda(G)] = 22k for some k 21

Then Winograd's time is 1 + 2k and our computation time is 1 + Kk,
i.,e., his circuit requires about twice as long.

The reader can easily construct a myriad of similar examples.

It has been pointed out to the author by Winograd [3] that our
construction can be altered as follows. If there is an integer k for

which 2k = r, then each element in the first level of the circuit can
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actually test Kk components of the input vectors, This results in a

computation time of

1+ [1Ogr 112 [1°gd é%)ﬂ

Thus a computation time of

1+ [ 1og, L—-:-] [0, 1211

can be achieved. This means that there are cases in which our original
construction has time one greater than the lower bound but this altered

version is as rapid as possible. This is true, e.g., if

l-logd %%é)] =85 and r =4
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